
Health-Related Quality
of Life and Functional
Capacity Outcomes Post
Transcatheter Aortic
Valve Replacement
(TAVR): A Systematic
Review and MetaAnalysis

Presented by

Nicola Straiton (PhD Candidate) Sydney Nursing School

Aortic stenosis (AS) is one of the most common heart valve diseases globally

- AS is the narrowing of the aortic valve opening, impeding delivery
 of blood from the heart to the body.
- Prevalence of AS increases with age (almost 10% in 80-89 year olds)...
- Symptoms of AS include angina, syncope, and those of heart failure (primarily dyspnoea).
- AS will eventually lead to death if treatment not provided.

 The PARTNER trial Cohort B, reported a mortality rate

 of 50.7% within one year...
- 1. Eveborn, G.W., et al., The evolving epidemiology of valvular aartic stenosis. the Tromso study. Heart, 2013. 99(6): p. 396-400.
- 2. Svensson, L.G., et al., A comprehensive review of the PARTNER trial. J Thorac Cardiovasc Surg, 2013. vol. 145, no. 3 Suppl, pp. S11-6.

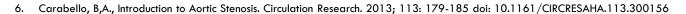
Traditional treatment for severe AS is surgical valve replacement (SAVR), or medical treatment alone in high-risk patients

- With SAVR, patients >80yrs old mortality increases sharply...
- Older, higher-risk surgical patients can often be predisposed to a delayed recovery period, increased complications and cognitive decline post operatively (SAVR).
- Conservative management associated with a poor prognosis amongst high-risk, severe AS patients.
- A new approach to Aortic Valve Replacement was required.

^{3.} Chukwuemeka, A., et al., Valve surgery in octogenarians: a safe option with good medium-term results. Journal of Heart Valve Disease, 200 discussion 196.

An effective contemporary treatment alternative to SAVR for high-risk patients is TAVR (Transcatheter Aortic Valve Replacement)

- Minimally invasive, percutaneous insertion of a bio-prosthetic valve directly in position of the native stenosed aortic valve (femoral approach common)
- Reduced procedural time usually 1-2 hours, less anaesthetic,
 smaller wounds, less pain and shorter recovery time
- Compared to SAVR, TAVR patients have lower mortality in the short term (1yr 14.2% TAVR vs 19.1% SAVR)
 and equivalent mortality at 5 years(4.5).


⁴ Reardon M.J. et al., 2-Year outcomes in patients undergoing surgical or self-expanding transcatheter aortic valve replacement.

J Am Coll Cardiol. 2015, 66:113-121.

⁵ Mack MJ et al., 5-year outcomes of transcatheter aortic valve replacement or surgical aortic valve replacement for high surgical risk patients wit (PARTNER 1): a randomised controlled trial. Lancet. Mar 15, 2015; [doi: 10.1016/S0140-6736(15)60308-7]

Knowledge Gaps in Cardiovascular Care of the Older Adult Population

- Recent TAVR vs SAVR studies focused on mortality rate and post operative complication outcomes.
- Older patients may place greater value on functional capacity and quality of life outcomes, than longevity...
- Since initial TAVR in 2002 > 150,000 cases worldwide
- Limited comprehensive evidence in TAVR, for key patient outcomes such as quality of life, physical function, and maintenance of independence.

^{7.} Ibebuogu UN, Giri S, Bolorunduro O, Tartara P, Kar S, Holmes D, Alli O. Review of Reported Causes of Device Embolization Following Trans-Catl Implantation. Am. J. Cardiol 2015;115:1767-1772.

Health-Related Quality of Life (HRQoL) and Functional Capacity Outcomes Post Transcatheter Aortic Valve Replacement (TAVR): A Systematic Review and Meta-Analysis

Methods

Aim: to perform a systematic search and meta-analysis to describe changes in functional capacity and HRQoL outcomes for TAVR patients.

Keywords: Transcatheter * Aortic Valve * Quality of Life * Functional Assessment * ADL

Inclusion Criteria:

- 1) included TAVR patients
- 2) reported **at least one measure of functional capacity** (objective or self-reported) <u>and/or</u> **quality of life**
- 3) reported the measure(s) both **pre and post TAVR** (minimum 1m and up to 12m post)
- 4) used **validated and reliable tools** for assessing functional capacity and/or quality of life, in patients with **cardiovascular**

Search Strategy

Bibliographic databases (CINAHL, EMB Review, EMBASE, MEDLINE, PreMEDLINE, COCHRANE) Reference lists of eligible papers, bibliographies of related trials and conference abstracts Google scholar n = 519Studies excluded based on screening for discipline and duplication Studies screened for title and abstract n = 302review n = 217 Studies excluded as titles or abstracts indicate they would not meet inclusion criteria n = 176 Studies retrieved for full text analysis n = 41Excluded studies 1. Incomplete data (n=9) 2. Duplicate sample (n=6) 3. No post TAVR Measure (n=5) 4. No validated measure of functional capacity or HRQoL (n=2) Studies meeting inclusion and exclusion n = 22 criteria included for analysis

n = 19

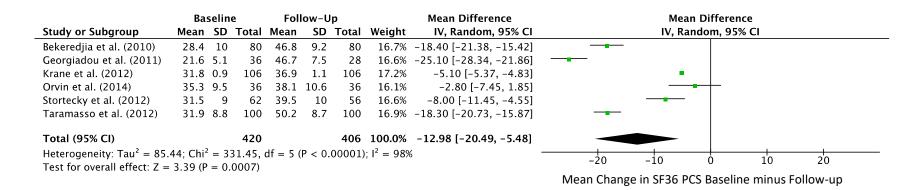
Study Characteristics (n=19)

- 6 were multi-centre and 13 were single site
- 13 were observational, 5 RCT's and 1 registry
- Europe (n=13), the Middle East (n=1), North America (n=5) and Australasia (n=1).
- Total sample was **2645 patients**, with study sample size ranging from n=36 to n=484.
- Participants had a mean age of 81.7±2.1 years (78–86 years)
 and 52%±8.8 were females
- A range of measures of functional capacity and HRQoL were used. 5 studies used 6MWT and 3 used DASI, 9 used SF12/36, 6 used EQ5D, and lastly 3 used MLHFQ and 4 KCCQ.

Study Measures

Measure 2	Description 2	Range [7] Walues [2]	Clinically Meaningful
			Difference 2
SF36/SF122	36-Item 22-Item Short Form Health 2	TheMentalComponentSummary[MCS] and the Physical 2	≥2.5points2
?	Survey2	Component Summary (IPCS). The Boore Danges D-100, Dacreasing D	
		values@epresent@etter@HRQOL@	
EQ5D-Index2	EuroQoL@5D,@	ABingle Index Value Obtained Iby Combining And Iweighting These 2	≥0.074\points2
(Utilities) 2	generic THRQoL Index Instrument I	various dimensions of HRQoL. The Boore danges from 10.0-1.0, thigher 2	
2	?	valuedepresentsOncreasedOHRQoL.2	
EQ5D-VAS2	EuroQoLIVisual Analogue Scale, Tating 2	Respondents Trate Their Present The alth Status Tusing Taß Cale Throm DE	≥8points2
	health@tate?	100, Ancreasing Values Depresent Obetter HRQoL O	
MLHFQ2	Minnesota Living With Heart Failure 2	ScoringBystemBworksUnverselyDoTheTotherTools,BwithTaTangeTOToo1.05,E	≤5points2
2	Questionnaire	decreasing@alues@epresent@better@HRQoL@	
KCCQ-OS2	The Kansas City Cardiomy opathy 2	Scoresfor@ach@ubscale@nd@verall@core,@	≥20points2
	Questionnaire, overall ummary.	range@rom@@o@00,@ncreasing@alues@epresent@better@HRQoL@	?
6MWT?	Six-minute@walk@est,@bjective@	Distance Ineasured In Itotal Inetres Iachieved Ibver Bix-minutes. 2	≥50@metres@
?	measure@fphysically@apacity2	Increasing@istance@epresents@betterphysical@valking@apacity@	
DASI 2	DukeActivityStatusIndex,Bunctional?	Each litem is sweighted by lits known in etabolic cost and sweights of 2	≥4points2
	capacity of patients with 2	positiveHerms,WhichAreRombinedHoPprovideABingleBcore.TheBcoreI	
	cardiovascular disease 2	ranges D Lo E 8.2, Lincreasing Values Depresent Detter HRQoL 2	

?


Functional Capacity improved significantly as measured by the 6-minute walk test (6MWT) and a clinically meaningful increase in ability to perform daily physical-based tasks (Duke Activity Status Index (DASI)

A mean increase of 41.48m in 6MWT (Cl 9.69-73.28, p=0.01) and a 5.42 points mean increase was reported with DASI (Cl 3.16-7.68) p=<0.01).

	Baseline			Follow-Up		Mean Difference		Mean Difference				
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI		IV, Rando	m, 95% CI	
Bagur et al. (2011)	165.9	77.6	46	211.8	78.7	46	16.5%	-45.90 [-77.84, -13.96]		-		
DeLarochellière et al. (2015) (anemia)	167.8	120.5	242	234.5	122.1	148	17.6%	-66.70 [-91.55, -41.85]				
DeLarochellière et al. (2015) (no anemia)	220.5	116.5	137	285.4	112.2	98	16.9%	-64.90 [-94.46, -35.34]	-			
Gotzmann et al. (2012)	213	131	112	267	165	112	15.2%	-54.00 [-93.02, -14.98]		-		
Green et al. (2013) (fast walkers)	240	96	133	196	148	103	16.3%	44.00 [11.09, 76.91]				
Green et al. (2013) (slow walkers)	72	34	133	130	126	103	17.6%	-58.00 [-83.01, -32.99]	_			
Total (95% CI)			803			610	100.0%	-41.48 [-73.28, -9.69]				
Heterogeneity: $Tau^2 = 1333.58$; $Chi^2 = 34.00$, $df = 5$ (P < 0.00001); $I^2 = 85\%$ Test for overall effect: $Z = 2.56$ (P = 0.01) Heterogeneity: $Tau^2 = 1333.58$; $Chi^2 = 34.00$, $df = 5$ (P < 0.00001); $I^2 = 85\%$ Mean Change in 6MWT Baseline minus Follow-Up					100							

HRQoL improved significantly and demonstrated a clinically meaningful difference post TAVR.

Short Form Health Surveys had similar increases in both for the **Physical Component Summary Score** (PCS), a **mean increase of 12.98 points**, (SF36) (Cl 5.48-20.49, p=<0.01) and **by10.14 points** (SF12) (Cl 4.20-16.09, p=<0.01) at follow-up. Mental Component Summary Score (MCS) improved slightly less but still significantly (SF36 a mean increase of 5.43 points (Cl 0.88-9.99, p=<0.01) and SF12 by 5.95 points (Cl 2.80-9.09, p=<0.01).

HRQoL improvements were seen irrespective of the measure used and whether it was general or cardiac specific.

Cardiac-specific HRQoL as measured by the **MLFHQ** improved with a decrease of 21.30 points (Cl 27.13-15.46), p=<0.01, which was clinically meaningful and the **KCCQ** with a mean increase of 15.97 points (Cl 7.64-24.30), p=<0.01 post TAVR. In the more general **EQ5D** questionnaire statistically significant increases were seen in both elements, the utilities score with a mean difference increase of 0.05 points, (Cl 0.01-0.10), p=0.03 and the **VAS** a 13.81 point increase (Cl 9.28-18.34), p=<0.01, the latter being clinically meaningful.

Results Interpretation

Measure	Change	Post TAVR
6MWT	1	>40m exercise capacity
DASI	Î	Personal Care, Walking, Housework, Recreational Activities
SF PCS	Î	Walking, Physical Capability, Accomplish More Activities
SF MCS	Î	Calmer, Desire to Engage in Activities, Less Worn Out, Decreased Anxiety
MLHFQ & KCCQ	Î	Improved HF symptoms, Exercise Capacity, More Control, Personal Care, Less Fatigue, Improved Social Interaction
EQ5D	Î	Walking, Personal Care, Overall General Health

A high level of cross study heterogeneity was present.

For functional capacity analysis this ranged from I2 = 59% (DASI) to I2 = 85% (6MWT). Similar heterogeneity ranges were found in HRQoL outcome measures, with the lowest I2 = 55% (EQ5D utilities) to I2 = 98% (SF36 PCS component). The high levels of heterogeneity may reflect the range of studies included, with the **majority being single centre studies observational studies (68%)** compared with multi-site trials.

Discussion

- Post TAVR, patients had significant improvement in functional capacity of the 6-minute walk test and a meaningful increase in ability to perform daily physical-based tasks.
- HRQoL improved consistently following TAVR regardless of measure used.
- TAVR resulted in clinically meaningful increases in both the physical and mental HRQoL composite scores, however, physical scores overall had greater improvements.

Conclusion

 TAVR represents not only an increasingly viable but directly beneficial option for high-risk, severe AS patients.