

Clinical Considerations of High Intensity Interval Training (HIIT)

Jenna Taylor
Exercise Physiologist & Dietitian – The Wesley Hospital
PhD Candidate – The University of Queensland

What is High Intensity Interval Training?

Alternating periods of anaerobic exercise with periods of lower intensity

or no exercise

43 mins/session

The Wesley HOSPITAL Sprint Interval Training

The Wesley HOSPITAL Sprint Interval Training

High Intensity Interval Training vs Sprint Interval Training

Weston, Wisloff and Coombes, Br J Sports Med., 2014 Aug;48(16):1227-34.

HIIT is relative to the patient.

High tensity Interval Training

HIIT Doubles Cardiorespiratory Fitness

HIIT increases VO₂peak by 19.4% compared to moderate intensity 10.9%

Equivalent to ~ 10-20% greater reduction from HIIT in risk of death over 8 years

Weston, Wisloff and Coombes, British Journal of Sports Medicine, Published Online First: [23 Oct, 2013]

AIM

To clinically translate High Intensity Interval Training (HIIT) into a real world hospital-initiated cardiac rehabilitation program, using subjective measures of exercise intensity.

Feasibility, Safety, Adherence, and Efficacy of High Intensity Interval Training for Rehabilitation in Coronary Heart Disease

Stage	Timeframe	Weekly Exercise Training	Level of support
Stage 1	1 month	Hospital Cardiac Rehab Program = 2 x supervised sessions + 1 home-based session	Supervised exercise classes
Stage 2	2 months	Home-based Program > 3 x home-based sessions	Routine support
Stage 3	9 months	Maintenance Program > 3 x home-based sessions	No routine support

Screening Process

- Angiographically proven CAD
- < 80 years old
- Screened by study medical advisor for eligibility
- Treating cardiologist informed of their patient's participation, with opportunity to exclude involvement
- Baseline maximal exercise test supervised by medical doctor.

Absolute Exclusion Criteria

- < 4 weeks following ACS or CABG
- <3 weeks following PCI
- Obstructive left main artery disease
- Unstable angina
- Uncontrolled cardiac arrhythmia
- Acute endocarditis, myocarditis or pericarditis
- Moderate to severe aortic stenosis
- Decompensated heart failure
- Acute pulmonary embolism, or deep vein thrombosis
- Aortic dissection
- Higher degree heart block
- Hypertrophic obstructive cardiomyopathy
- Recent stroke or transient ischemic attack
- Uncontrolled diabetes
- Acute or chronic renal failure
- Pulmonary fibrosis or interstitial disease
- Severe neuropathy

Our Modified HIIT Protocol

32 mins/session

METHODS

Baseline Testing

HR Target Zone Considerations

HR_{max} is not always achieved during maximal exercise test

HR target zone would be affected if:

- Medication dose changed, OR
- Variation existed between the time of training and exercise testing

EXAMPLE

Beta blocker taken at 7am Maximal Test = 9am

HRmax = 130bpm 85-95%HRmax = 111–124bpm

Beta blocker taken at 7am Maximal Test = 12pm

HRmax = 145bpm 85-95%HRmax = 124–138bpm

RPE-Based HIIT protocol should be used to validate HR training zone

Validation of HR Target Zones

Validate HR target zone during exercise training

Start 4 minute high intensity interval at RPE 15 (Hard) Finish high intensity interval at RPE 17-18 (Very Hard) Check and record HR throughout using HR monitor Allow 2 minutes (halfway) to reach HR target zone

Continue using HR target zone

If HR remains in target HR zone during validation, **OR** If there is an indication of inaccurate HR target zone arises, **go to Calibration**

Indications of an inaccurate HR target zone

- Exercising HR is above HRmax
- Exercising HR is below target HR zone but RPE is 15-18.

CALIBRATION

- Repeat maximal exercise test and recalculate HR target zone, OR
- Use RPE to guide intensity

CRExPAH - Centre for Research on Exercise, Physical Activity & Health

RESULTS – Baseline

Participant Characteristics	HIIT (n= 47)
Age (years)	65 <u>+</u> 7
VO ₂ peak (ml/kg/min)	27.7 <u>+</u> 6.0
BMI (kg/m ²)	28.0 <u>+</u> 4.0
Males	39
Females	7
Cardiac event / intervention (%)	
Acute coronary syndrome	19
CABG	32
PCI/Stent	49
Medical	17
Other risk factors (%)	
Diabetes	4
Smoking	2

RESULTS – Baseline

Medications	HIIT (%)
B-Adrenergic blockers	40
Statins	98
ACE inhibitor	19
Angiotensin II receptor blockers	34
Calcium channel blockers	4
Antiplatelet agents	
· Aspirin	96
• Other	53

RESULTS – 5 weeks

43 patients completed 4 week HIIT program

98% patients – willing to continue HIIT after 4 weeks

Enjoyment was high - rated as 5.4 out of 7 on likert scale

Adherence to protocol (completion of sessions) = $91 \pm 14\%$

Adherence to protocol (intensity & duration) = 79 ± 20 %

RESULTS – Training data

Mean <u>Average</u> Training Data = Average of all 4 intervals over 4 weeks

RESULTS – Training data

Mean <u>Peak</u> Training Data = Average of interval with highest value over 4 weeks

RESULTS – Training RPE data

Mean Average Training Data = Average of all 4 intervals over 4 weeks

Mean Peak Training Data = Average of interval with highest value over 4 weeks

Training Data	Mean Average (4 HIIT intervals)	Mean Peak (highest HIIT interval)
Training RPE	16 <u>+</u> 1	17 <u>+</u> 2
Number of participants Below target RPE (<rpe 15)<="" th=""><th>7 (16%)</th><th>0 (0%)</th></rpe>	7 (16%)	0 (0%)
Number of participants Above target RPE (>RPE 18)	0 (0%)	5 (12%)

RESULTS – VO2peak

HIIT = $+2.9 \pm 3.5$ ml/kg/min; MICT = 1.1 ± 0.0 ml/kg/min

RESULTS

Correlation with Change VO _{2peak}	Correlation Coefficient	P Value
Average Training RPE	.135	0.22
Peak Training RPE	.101	0.35

Correlation with Change VO _{2peak}	Correlation Coefficient	P Value
Average Training HR	.277*	0.01
Peak Training HR	.262*	0.01

RESULTS – Training HR data

Training Data	Mean Average (4 HIIT intervals)	Mean Peak (Highest interval)
Training HR (bpm)	93 <u>+</u> 6	99 <u>+</u> 7
Number of participants Below target HR (<85%HR _{max})	4, (9%)	0, (0%)

44% patients achieved a higher HR on follow-up exercise test

ADJUSTED Training Data	Mean Average (4 HIIT intervals)	Mean Peak (Highest interval)
Training HR (bpm)	90 <u>+</u> 6	96 <u>+</u> 7
Number of participants Below target HR (<85%HR _{max})	8 (18%)	2 (5%)

Guidelines for HIIT Prescription

STEP 1: Measure or Estimate HRmax
From maximal exercise test or prediction equation

STEP 2:

Calculate HR target zone

Establish zone from 85 to 95% HRmax

STEP 3:

Validate HR target zone during exercise training

Start 4 minute high intensity interval at RPE 15 (Hard) Finish high intensity interval at RPE 17-18 (Very Hard) Check HR throughout using HR monitor

Allow 2 minutes (halfway) to reach HR target zone

STEP 4A:

Continue using HR target zone

If HR remains in target HR zone during validation. OR if there is an indication of inaccurate HR target zone arises, go to Step 4B.

Supplementary Information

Abbreviations

- HR = Heart Rate;
- RPE = Rating of Perceived Exertion (6-20 BORG scale)

Formulae for estimating HRmax

- If not taking beta blocker = 211 (0.64 x age)⁷
- If taking beta blocker = 164 (0.7 x age)8

Reasons for inaccurate HR target zone

- Maximal exercise testing did not provide HRmax
- Medications affecting HR (beta blockers) have variable HR response depending on dosage, and time of exercise

For cardiac patients, extend warm up and cool down ≥ 3 minutes

Monitoring during HIIT

- Record highest HR achieved during each high intensity interval
- Ask for highest RPE during each high intensity interval
- Monitor for symptoms (see Figure 2) before, during, and after.
- Measure blood pressure during final 2 minutes of the high intensity interval (initially during the 1st interval to check for hypertensive response)

Indications of an inaccurate HR target zone

- Exercising HR is close to or above HRmax (from STEP 1)
- Exercising HR is below target HR zone but RPE is 15-18.

V

CALIBRATION

STEP 4B:

Repeat maximal exercise test and recalculate HR target zone, $\ensuremath{\mathsf{OR}}$

Estimate new HRmax and recalculate HR target zone, OR

Use RPE to guide intensity

The Wesle Clinical Considerations for William University

Initial Assessment

- Presenting medical condition
- Medical history (check for exclusions)
- Co-morbidities (e.g. diabetes, hypertension)
- Medication regimen (including dose and timing)
- Relevant clinical data (e.g. resting blood pressure and heart rate, fasting blood glucose, oxygen saturation)
- Treating physicians and general practitioner
- Current or previous physical activity level
- Factors that may impact exercise participation (e.g. injury)

Screening tool may be useful (ACSM Preparticipation screening algorithm9)

Monitoring Checklist

- How is the patient feeling today
- Medical updates or changes to health status
- Recent symptoms (e.g. angina, light-headedness)
- Prescribed medications taken within the past 24 hours
- Medication regimen changes (dose / timing)
- Resting blood pressure and heart rate
- Resting and post-exercise blood glucose in patients taking insulin or other oral hypoglycemic agents
- Monitor dehydration pre and post (>2% drop from usual bodyweight) in patients at risk of electrolyte imbalance (e.g. kidney disease)

Absolute Contraindications (adapted from Fletcher et al)

- Obstructive left main artery disease
- Unstable angina
- Uncontrolled cardiac arrhythmia
- Acute endocarditis, myocarditis or pericarditis
- Moderate to severe aortic stenosis
- Decompensated heart failure
- Acute pulmonary embolism, or deep vein thrombosis
- Aortic dissection
- Higher degree heart block
- Hypertrophic obstructive cardiomyopathy
- Recent stroke or transient ischemic attack
- Uncontrolled diabetes
- Acute or chronic renal failure
- Pulmonary fibrosis or interstitial disease
- Severe neuropathy
- Recent myocardial infarction (< 4 weeks), coronary artery bypass surgery (<4 weeks), or percutaneous intervention (<3 weeks)

Indications for avoiding HIIT

- Feeling unwell
- Current angina, light-headedness, or dyspnea
- Resting blood pressure > 200/110mmHg
- Hypoglycemic event in the past 24hours that required assistance from another individual to treat the event
- Blood glucose <4.0mmol/L
- Blood glucose >15.0mmol/L with symptoms of hyperglycemia
- Presence of any atypical arrhythmia (detected via telemetry or pulse)

Indications for ceasing HIIT

- Symptoms such as angina, dyspnea, light-headedness, confusion, or signs of poor perfusion.
- Rise in blood pressure > 250/115mmHg
- Drop in systolic blood pressure >10mmHg from baseline during high intensity interval.
- Slowing heart rate with higher workload or development of any atypical arrhythmia

Medical Clearance

- Medical clearance (from medical specialist or general practitioner) should be sought for all patients with clinical conditions prior to commencing HIIT.
- For patients post surgery or percutaneous intervention, clearance should be sought from the respective surgeon or interventionalist.

CRExPAH - Centre for Research on Exercise, Physical Activity & Health

CONCLUSIONS

HIIT is a potent stimulus and time efficient way to improve fitness

HIIT can be effectively delivered using RPE

HR target zones are still important

HIIT has a high adherence and enjoyment rate

HIIT well accepted in this population – 98% found it feasible to continue

Another tool in the toolbox

ACKNOWLEDGMENTS

Wesley Hospital Cardiac Rehabilitation

TEAM – University of Queensland

- Professor Jeff Coombes, PhD
- Dr Shelley Keating, PhD
- Dr Michael Leveritt, PhD
- Dr David Holland, MBBS, PhD

FUNDING

- Wesley Medical Research
- NHMRC Postgraduate Scholarship

Australian Government

National Health and Medical Research Council