The Effect of Chemotherapy on Aerobic Power and Cardiac Function in Early-stage Breast Cancer Patients

Ashley Bigaran¹, Erin Howden¹, Kristel Janssens¹, Steve Selig², Steve Fraser^{2,3}, Andre La Gerche¹ ¹Sports Cardiology, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia ²School of Exercise and Nutrition Sciences, Deakin University, Burwood, Victoria, Australia ³Institute for Physical Activity and Nutrition, Deakin University, Burwood, Victoria, Australia

BREAST CANCER IN AUSTRALIA

NUMBER OF WOMEN DIAGNOSED IN 2017

17,586

1 IN 8 WILL DEVELOP BREAST CANCER

5-YEAR SURVIVAL RATE

Cardiovascular disease in cancer patients is an important public health issue

Cardiovascular disease is the leading cause of non-cancer related death in breast cancer survivors ^[2-4]

Figure 1: Women with breast cancer (dash), women without breast cancer (solid line)

Chemotherapy may lead to cardiac injury

Anthracycline-chemotherapy is the primary treatment for solid tumours and is associated with cardiotoxicity^[5]

Figure 2: Cardiac reserve decreases with chemotherapy and increases risk of heart failure

Cardiac imaging and testing

- Resting echocardiography
 - Left ventricular ejection fraction (LVEF) [5-9]
 - Global longitudinal strain (GLS) ^[5-9]
- Biochemical markers
 - Troponin^[6]
 - B-type Natriuretic Peptide (BNP)^[6]
- Cardiopulmonary exercise testing [9-13]

Exercise training during chemotherapy

- Exercise training has been proven to be well-tolerated and safe in breast cancer during chemotherapy [13-15]
- One study has demonstrated VO₂peak ↑ 11% during chemotherapy but others studies have not. ^[13-16]
- In patients who do not exercise, VO₂peak ↓ ~10% after 12-weeks of chemotherapy treatment ^[14-17]

Research aim and hypotheses

Aim: We sought to assess the association between resting cardiac function measures and VO_2 peak and whether exercise training could attenuate changes in VO_2 peak during therapy.

Hypotheses:

- VO₂peak will decrease in early-stage breast cancer patients treated with anthracycline-based chemotherapy
- Changes in cardiac function will not associated with changes in VO₂peak
- Exercise will attenuate falls in VO₂peak and cardiac function

28 early-stage breast cancer patients recruited into a observational non-randomised study

- Scheduled for anthracycline-based chemotherapy
- Aged 18-70 years
- Capable of exercise

er

INSTITUTE

Exercise intervention

Exercise training principles	
Frequency	Three sessions per week (two supervised, one unsupervised)
Intensity	Moderately-vigorous - 70-85% exercise intensity
Туре	Mix method of aerobic training (stationary cycling) and resistance training
Time	150 minutes per week
Progression/Regression method	Progressed every 4 weeks using a submaximal progressive exercise test

Baseline characteristics

	Usual care (n=13)	Exercise training (n=15)	<i>p</i> value
Age (y)	51.8 ± 12.3	45.8 ± 9	0.15
Height (cm)	151 ± 8.5	152 ± 9.1	0.77
Body mass (kg)	75.4 ± 17.6	68.1 ± 20.5	0.32
Breast cancer diagnosis			
• HER2+	4 (30%)	2 (13%)	
• ER-, PR-, HER2-	3 (23%)	8 (62%)	
• Other	6 (46%)	5 (33%)	
VO ₂ peak (ml.kg ⁻¹ .min ⁻¹)	21.2 ± 5.6	26.9 ± 4.9	0.007
VO ₂ peak (%predicted)	65.9± 22.9	83.5± 20.7	0.04

Exercise training during chemotherapy preserved VO₂peak

Changes in VO₂peak

Interaction p = 0.07Pre to post p = 0.002

Exercise training during chemotherapy preserved power output

Interaction p = 0.07Pre to post p = 0.03

Cardiac function is reduced during chemotherapy

Left ventricular ejection fraction (LVEF%) Global longditudional strain (GLS%)

Baker HEART & DIABETES INSTITUTE

Biomarkers of cardiac damage increased during chemotherapy

Interaction p = 0.04Pre to post p < 0.001

Interaction p = 0.72Pre to post p = 0.99

Linear correlation of LVEF vs VO₂peak

r² = 0.001, *p* = 0.86

Study limitations

- The present study was a non-randomised observational with the primary objective of feasibility
- Selection bias
 - Participants allocated to each group by choice
- Other limitations
 - Small proportion of usual care arm completed regular exercise training
 - The single centre study
 - Small sample size (n=28)
 - Short exercise intervention (12-weeks)

Conclusion

- Chemotherapy decreased exercise capacity in early-stage breast cancer patients
- Exercise training attenuated the decline in VO₂peak during chemotherapy
- A decrease in cardiac function did not predict the decline in VO₂peak
- Further studies are planned to test whether changes in VO₂peak predicts clinical outcomes

Acknowledgements

Special thank you to our phenomenal participants

Honours Supervisors: A/Prof Andre La Gerche, Prof Steve Selig & Dr Steve Fraser

Sports cardiology team: Dr Erin Howden, Kristel Janssens, Rhys Beaudry & Lucie d'Udekem d'Acoz

Acknowledgements to the Baker Institute, Deakin University, Peter MaCallum Cancer Centre, St Vincent's Hospital and Cabrini Health (Brighton) and the Australian Government Research Training Program Scholarship

Special mention to Institute of Health & Ageing, ACU and my PhD supervision team of A/Prof Prue Cormie and A/Prof Michael Baker.

Thank you!

'We think with exercise, it's going to use up all your energy, but it creates energy' – RS - participant

Baseline characteristics

	Usual care (n=13)	Exercise training (n=15)	P value
Age (y)	51.8 ± 12.3	45.8 ± 9	0.15
Height (cm)	151 ± 8.5	152 ± 9.1	0.77
Body mass (kg)	75.4 ± 17.6	68.1 ± 20.5	0.32
BMI (kg/m ⁻²)	23.1±5.2	20.7± 6.2	0.27
Breast cancer diagnosis			
• HER2+	4 (30%)	2 (13%)	
• ER-, PR-, HER2-	3 (23%)	8 (62%)	
• Other	6 (46%)	5 (33%)	
Treatment			
• AC	10 (76%)	10 (66%)	
AC (dose dense)	2 (15%)	3 (20%)	
• FED-D	1 (7%)	2 (13%)	
VO ₂ (L/min ⁻¹)	1.6 ± 0.4	1.8 ±.32	0.11
VO ₂ peak (ml.kg ⁻¹ .min- ¹)	21.2 ± 5.6	26.9 ± 4.9	0.007
VO ₂ peak (%predicted)	65.9± 22.9	83.5± 20.7	0.04

Fick equation

Fick equat	tion: $VO_2 = SV \times HR \times [O_2]_{a-v}$
SV and HR	\downarrow SV x \leftrightarrow HR
O ₂ arterial (Hb)	\downarrow Hb $\Rightarrow \downarrow$ [O ₂] _a
Skeletal muscle utilisation of O ₂	\downarrow SV x \leftrightarrow HR x \uparrow [O ₂] _{a-v} indicated by \downarrow [O ₂] _a and $\downarrow \downarrow$ [O2] _v across skeletal muscle

Abbreviations: VO₂ (oxygen consumption), SV (stroke volume), HR (heart rate), [O₂]_{a-v} (arteriovenous oxygen difference across the pulmonary circulation) and Hb (haemoglobin).

Exercise intervention model

References

1.	Australian Institute of Health and Welfare, Australian Cancer Incidence and Mortality (ACIM) books. Australian Cancer Incidence and Mortality (ACIM) books: breast cancer, ed. AIWH. 2017, Canberra: AIWH.
2.	Bradshaw, P.T., et al., Cardiovascular Disease Mortality Among Breast Cancer Survivors. Epidemiology, 2016. 27(1): p. 6-13.
3.	Ewer, M.S.E. and M. Steven, Cardiotoxicity of anticancer treatments. Nature Reviews Cardiology, 2015. 12: p. 547-558.
4.	Ewer, M.S.E. and M. Steven, Cardiotoxicity of anticancer treatments: what the cardiologist needs to know. Nature Reviews Cardiology, 2010. 7 (10).
5.	Cristiciello, C., et al., Targeted therapies in breast cancer: are heart and vessels also being targeted? Breast Cancer Res, 2012. 14(3): p. 209.
6.	Cardinale, D., et al., Early detection of anthracycline cardiotoxicity and improvement with heart failure therapy. Circulation, 2015. 131(22): p. 1981-8.
7.	Khouri, M.G., et al., Cancer therapy-induced cardiac toxicity in early breast cancer: addressing the unresolved issues. Circulation, 2012. 126(23): p. 2749-63.
8.	Khouri, M.G., et al., Utility of 3-dimensional echocardiography, global longitudinal strain, and exercise stress echocardiography to detect
	cardiac dysfunction in breast cancer patients treated with doxorubicin-containing adjuvant therapy. Breast Cancer Res Treat, 2014. 143(3): p. 531-9.
9.	La Gerche, A., et al., Cardiac MRI: a new gold standard for ventricular volume quantification during high-intensity exercise. Circ Cardiovasc Imaging, 2013. 6(2): p. 329-38.
10.	La Gerche, A., et al. (2013). "To assess exertional breathlessness you must exert the breathless." Eur J Heart Fail 15(7): 713-714.
11.	Scott, J.M., et al., Modulation of anthracycline-induced cardiotoxicity by aerobic exercise in breast cancer: current evidence and underlying mechanisms. Circulation, 2011. 124 (5): p. 642-50.
12.	Jones, L.W., et al., Cardiopulmonary function and age-related decline across the breast cancer survivorship continuum. J Clin Oncol, 2012. 30 (20): p. 2530-7.
13.	Courneya, K.S., et al., Effects of aerobic and resistance exercise in breast cancer patients receiving adjuvant chemotherapy: a multicenter randomized controlled trial. J Clin Oncol, 2007. 25(28): p. 4396-404.
14.	Hornsby, W.E., et al., Safety and efficacy of aerobic training in operable breast cancer patients receiving neoadjuvant chemotherapy: A phase II randomized trial. Acta Oncologica, 2014. 53(1): p. 65-74.
15.	Courneya, K.S., et al., Effects of Exercise Dose and Type During Breast Cancer Chemotherapy: Multicenter Randomized Trial. Journal of the National Cancer Institute, 2013. 105 (23): p. 1821-1832.
16.	Physicians, A.T.S. and C. American College of, ATS/ACCP Statement on cardiopulmonary exercise testing PubMed - NCBI. 2015.
17.	Fitzgerald, M.D., et al., Age-related declines in maximal aerobic capacity in regularly exercising vs. sedentary women: a meta-analysis. Journal of Applied Physiology, 1997. 83(1): p. 160-165.

