An absolute risk prediction model for rehospitalisation in adults with chronic heart failure

Presented by
Dr Vasiliki Betihavas PhD
Sydney Nursing School, University of Sydney
Acknowledgement

- NHMRC: scholarship that supported PhD candidature

- My mentor Dr Steven Frost – assisted with analysis

- My PhD supervisors:
 - Professor Patricia Davidson
 - Dr Phillip Newton
 - Professor Gavin Leslie
Objectives

- Identify the burden of heart failure
- Identify current risk models and their limitations
- Describe the development of the absolute risk model
- Describe factors that predict the risk of rehospitalisation (CHF)
- Identify clinical relevance of the absolute risk model
What do we know

– Incidence & Prevalence of heart failure – Limited Australian Data

(Field B 2003)

– Self reported data has limitations
What do we know

Europe and USA data obtained from longitudinal studies

- Hillingdon heart failure study (UK)
- The Helsinki Ageing Study (Finland)
- Framingham study (USA)
What do we know

- Incidence: 5.1 million adults in the United States (Go and colleagues, 2013)
- 15 million in Europe (Dickstein and colleagues, 2008)
- CHF occurs in 1.5–2.0% of Australians
- Prevalence
 - 10% in people aged 65 years and older
 - over 50% in people aged 85 years

(National Heart Foundation of Australia and the Cardiac Society of Australia and New Zealand, 2011)
Burden of the disease

- **50%** of people who develop heart failure die within **5 years** \((\text{Go and colleagues, 2013}) \)

- Cardiovascular disease
 - Primary cause of death in Males and Females \((\text{ABS, 2012}) \)
 - More females than males have CHF, highest in Inner regional areas \((\text{AIHW, 2011}) \)
Burden of the disease

- Heart failure amounted to $416 million in 1993–94 (AIHW 2001)

- Currently, estimated at over $1 billion per year (Krum and colleagues, 2009)

- Expenditure due to hospitalisation followed by pharmacotherapies
Burden of the disease

- This number is increasing 43,408 in 1993–94 to 49,307 in 2007–08
- Heart failure is the PRIMARY reason for hospitalisation
- >65 years of age

(National Heart Foundation, 2013)

- Hospitalisation increases the risk for rehospitalisation & mortality
Measuring risk

- **Relative risk**
 - comparing the risk in two different groups of people
 - individuals with heart failure and those without heart failure

- **Absolute risk**
 - Individual’s overall risk
 - Presented as a percentage

- A limitation of the *relative risk* is that it does not inform you of an *INDIVIDUAL’S ACTUAL RISK*
Current risk models in heart failure and their limitations

<table>
<thead>
<tr>
<th>Source</th>
<th>Study type</th>
<th>Data source</th>
<th>Study location</th>
<th>No. of hospitals/no. of patients</th>
<th>Study outcome</th>
<th>Follow-up period</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chin and Goldman (1997)</td>
<td>Prospective cohort</td>
<td>Medical record review</td>
<td>Boston, U.S.A.</td>
<td>1/257</td>
<td>All-cause readmission or death</td>
<td>60 days</td>
</tr>
<tr>
<td>Felker et al (2004)</td>
<td>RCT cohort</td>
<td>Collected during RCT</td>
<td>U.S.A.</td>
<td>78/949</td>
<td>All-cause readmission or death</td>
<td>60 days</td>
</tr>
<tr>
<td>Yamokoski et al (2007)</td>
<td>RCT cohort</td>
<td>Collected during RCT</td>
<td>U.S.A. and Canada</td>
<td>26/373</td>
<td>All-cause readmission</td>
<td>6 months</td>
</tr>
<tr>
<td>Amarasingham et al (2010)</td>
<td>Prospective cohort</td>
<td>Electronic medical record review</td>
<td>Texas, U.S.A.</td>
<td>1(136)/1372</td>
<td>All-cause readmission or death</td>
<td>18 months</td>
</tr>
</tbody>
</table>
What this model adds…

Development of the absolute risk model

- Identified factors for risk from previous models (Betihavas et al, 2012)

- Identified factors from Integrative review of the literature (Betihavas et al, 2013)

- Identified factors from heart failure experts (Betihavas et al, 2013)

- Tested within a cohort of an Australian RCT
 - W.H.I.C.H. study (Stewart et al, 2012)
Methods

Statistical methods

- A modified Cox’s proportional hazards model (Therneau, 2000)
- Bootstrap methods
- Variables selected using backward-deletion-method
 - with a generous p-value for retention (0.2).
- Procedure was repeated 200-times (Harrell et al, 1998)
- Verification of the proportional hazards: Schoenfeld residual plots (Grambsch, 1994)
Methods

Model validation

- C statistic 0.80
- Accuracy of prediction in similar populations
- Sub-sample of 50 patients
- To estimate biases between the rates of readmission (Harrell, 2001)
- Using the final model a nomogram for predicting the probability of rehospitalisation for a cardiovascular event within 28-days or 1-year, for an individual with CHF was developed
Results for risk of readmission for a cardiovascular event

<table>
<thead>
<tr>
<th>Predictors</th>
<th>Hazard Ratios (95% Confidence Interval)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Crude</td>
</tr>
<tr>
<td>Age (each 10-year increase)</td>
<td>1.18 (1.05, 1.33)</td>
</tr>
<tr>
<td>Women versus men</td>
<td>1.12 (0.79, 1.60)</td>
</tr>
<tr>
<td>Lives alone</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>1.0 (ref)</td>
</tr>
<tr>
<td>Yes</td>
<td>1.07 (0.76, 1.51)</td>
</tr>
<tr>
<td>Sedentary</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>1.0 (ref)</td>
</tr>
<tr>
<td>Yes</td>
<td>1.72 (1.12, 2.62)</td>
</tr>
<tr>
<td>No. of comorbid conditions</td>
<td></td>
</tr>
<tr>
<td>0-1</td>
<td>1.0 (ref)</td>
</tr>
<tr>
<td>2-4</td>
<td>1.32 (0.31, 5.62)</td>
</tr>
<tr>
<td>5+</td>
<td>2.31 (0.57, 9.34)</td>
</tr>
<tr>
<td>Number of years with CHF</td>
<td></td>
</tr>
<tr>
<td>< 10</td>
<td>1.0 (ref)</td>
</tr>
<tr>
<td>10+</td>
<td>1.56 (0.93, 2.63)</td>
</tr>
</tbody>
</table>
Absolute risk model

Points

Age (yrs)

Woman

Lives Alone

Sedentary

Charlson Index

Years of Heart Failure

Total Points

28-day risk of readmission

1-year risk of readmission
Absolute risk model
Absolute risk model

Points

Age (yrs)

Woman

Lives Alone

Sendentary

Charlson Index

Years of Heart Failure

Total Points

28-day risk of readmission

1-year risk of readmission
Absolute risk model
Absolute risk model

Points

Age (yrs)

Woman

Lives Alone

Sendentary

Charlson Index

Years of Heart Failure

Total Points

28-day risk of readmission

1-year risk of readmission
Absolute risk model
Absolute risk model
Absolute risk model
Clinical significance of the model

- Clinically relevant to an Australian population
- Timely
- Clinically applicable
- Identify adults with CHF at risk of rehospitalisation
- Provides an absolute risk score for 28 days and 1 year
- Strategies implemented by healthcare providers to prevent rehospitalisation
References

- Dickstein, K., et al., ESC Guidelines for the Diagnosis And Treatment of Acute And Chronic Heart Failure 2008: The Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2008 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association of the ESC (HFA) and endorsed by the European Society of Intensive Care Medicine (ESICM). European Heart Journal, 2008. 29(19): p. 2388-2422
- National Heart Foundation of Australia and the Cardiac Society of Australia and New Zealand (Chronic Heart Failure Guidelines Expert Writing Panel). Guidelines for the prevention, detection and management of chronic heart failure in Australia. Updated October 2011
- Access Economics (2009) The economic costs of heart attack and chest pain
- BETIHAVAS, V., NEWTON, P. J., FROST, S. A., MACDONALD, P. S. & DAVIDSON, P. M. 2013. Patient, provider and system factors influencing rehospitalisation in adults with heart failure. Contemporary Nurse, 43, 244-256
- Therneau TM, Grambsch PM. Modeling survival data : extending the Cox model. New York: Springer; 2000. xii, 350 p
- Harrell FE. Regression modeling strategies: with applications to linear models, logistic regression, and survival analysis. New York: Springer; 2001
Thank you for your attention